6,251 research outputs found

    Cumulative light curves of gamma-ray bursts and relaxation systems

    Full text link
    The cumulative light curves of a large sample of gamma-ray bursts (GRBs) were obtained by summing the BATSE counts. The smoothed profiles are much simpler than the complex and erratic running light curves that are normally used. For most GRBs the slope of the cumulative light curve (S) is approximately constant over a large fraction of the burst. The bursts are modelled as relaxation systems that continuously accumulate energy in the reservoir and discontinuously release it. The slope is a measure of the cumulative power output of the central engine. A plot of S versus peak flux in 64ms (P64ms) shows a very good correlation over a wide range for both short and long GRBs. No relationship was found between S and GRBs with known redshift. The standard slope (S'), which is representative of the power output per unit time, is correlated separately with P64ms for both sub-classes indicating more powerful outbursts for the short GRBs. S' is also anticorrelated with GRB duration. These results imply that GRBs are powered by accretion into a black hole.Comment: 4 pages, 2 figures. Accepted for publication in Astronomy and Astrophysics Letter

    Temporal properties of short and long gamma-ray bursts

    Full text link
    A temporal analysis was performed on a sample of 100 bright short GRBs with T90 < 2s from the BATSE Current Catalog along with a similar analysis on 319 long bright GRBs with T90 > 2s from the same catalog. The short GRBs were denoised using a median filter and the long GRBs were denoised using a wavelet method. Both samples were subjected to an automated pulse selection algorithm to objectively determine the effects of neighbouring pulses. The rise times, fall times, FWHM, pulse amplitudes and areas were measured and their frequency distributions are presented. The time intervals between pulses were also measured. The frequency distributions of the pulse properties were found to be similar and consistent with lognormal distributions for both the short and long GRBs. The time intervals between the pulses and the pulse amplitudes of neighbouring pulses were found to be correlated with each other. The same emission mechanism can account for the two sub-classes of GRBs.Comment: 3 pages, 8 figures; Proceedings of "Gamma-Ray Burst and Afterglow Astronomy 2001", Woods Hol

    Transport policy and health inequalities: a health impact assessment of Edinburgh's transport policy

    Get PDF
    Health impact assessment (HIA) can be used to examine the relationships between inequalities and health. This HIA of Edinburgh's transport policy demonstrates how HIA can examine how different transport policies can affect different population groupings to varying degrees. In this case, Edinburgh's economy is based on tourism, financial services and Government bodies. These need a good transport infrastructure, which maintains a vibrant city centre. A transport policy that promotes walking, cycling and public transport supports this and is also good for health. The HIA suggested that greater spend on public transport and supporting sustainable modes of transport was beneficial to health, and offered scope to reduce inequalities. This message was understood by the City Council and influenced the development of the city's transport and land-use strategies. The paper discusses how HIA can influence public policy

    Gamma-ray bursts and X-ray melting of material as a potential source of chondrules and planets

    Get PDF
    The intense radiation from a gamma-ray burst (GRB) is shown to be capable of melting stony material at distances up to 300 light years which subsequently cool to form chondrules. These conditions were created in the laboratory for the first time when millimeter sized pellets were placed in a vacuum chamber in the white synchrotron beam at the European Synchrotron Radiation Facility (ESRF). The pellets were rapidly heated in the X-ray and gamma-ray furnace to above 1400 C melted and cooled. This process heats from the inside unlike normal furnaces. The melted spherical samples were examined with a range of techniques and found to have microstructural properties similar to the chondrules that come from meteorites. This experiment demonstrates that GRBs can melt precursor material to form chondrules that may subsequently influence the formation of planets. This work extends the field of laboratory astrophysics to include high power synchrotron sources.Comment: 8 pages, 10 figures. Proceedings of the 5th INTEGRAL Workshop, Munich 16-20 February 2004. High resolution figures available at http://bermuda.ucd.ie/%7Esmcbreen/papers/duggan_01.pd

    Influence of Sediment Nutrients on Growth of Emergent Hygrophila

    Get PDF
    Hygrophila ( Hygrophila polysperma (Roxb.) T. Anderson) is a plants which forms serious aquatic weed problems. Both submerged and emergent growth forms occur. Nutritional studies with a controlled release fertilizer and sediments collected from hygrophila-infested areas were conducted with the emergent growth habit to provide insights into growth of this introduced plant. Plant dry weights for experimental 16- week culture periods with low average temperatures were associated with low amounts of hygrophila biomass as compared to culture periods with high average temperatures. Hygrophila cultured in sand rooting media with the controlled release fertilizer produced as much as 20 times more dry weight than plants cultured in sediments only. First-degree linear regression statistics showed hygrophila dry weights were highly related to ammonia nitrogen, magnesium, sodium, and pH values in the sediments. These findings show the close relationship of the emergent growth habit of hygrophila to sediment nutrients. Analyses for certain sediment characteristics may provide an indication of the potential growth that may be expected for weed infestations of this plant. Hygrophila grows year round in south Florida; however, visual observations of canals and other bodies of water indicate that lower amounts of hygrophila plants occur during the cooler months of year than during the summer season. These findings show the seasonal growth of emergent hygrophila occurs with biomass dependent on both sediment nutrients and temperature

    Emission Spectra from Internal Shocks in Gamma-Ray-Burst Sources

    Get PDF
    Unsteady activity of gamma-ray burst sources leads to internal shocks in their emergent relativistic wind. We study the emission spectra from such shocks, assuming that they produce a power-law distribution of relativistic electrons and posses strong magnetic fields. The synchrotron radiation emitted by the accelerated electrons is Compton up-scattered multiple times by the same electrons. A substantial component of the scattered photons acquires high energies and produces e+e- pairs. The pairs transfer back their kinetic energy to the radiation through Compton scattering. The generic spectral signature from pair creation and multiple Compton scattering is highly sensitive to the radius at which the shock dissipation takes place and to the Lorentz factor of the wind. The entire emission spectrum extends over a wide range of photon energies, from the optical regime up to TeV energies. For reasonable values of the wind parameters, the calculated spectrum is found to be in good agreement with the burst spectra observed by BATSE.Comment: 12 pages, latex, 2 figures, submitted to ApJ

    The Host Galaxy of GRB980703 at Radio Wavelengths - a Nuclear Starburst in a ULIRG

    Get PDF
    We present radio observations of GRB980703 at 1.43, 4.86, and 8.46 GHz for the period of 350 to 1000 days after the burst. These radio data clearly indicate that there is a persistent source at the position of GRB980703 with a flux density of approximately 70 μ\muJy at 1.43 GHz, and a spectral index, β0.32\beta\approx 0.32, where FννβF_\nu\propto \nu^{-\beta}. We show that emission from the afterglow of GRB980703 is expected to be one to two orders of magnitude fainter, and therefore cannot account for these observations. We interpret this persistent emission as coming from the host galaxy --- the first example of a gamma-ray burst (GRB) host detection at radio wavelengths. We show that emission from an AGN is unlikely, and find that it can be explained as a result of a star-formation rate (SFR) of massive stars (M>5M_\odot) of 90 M_\odot/yr, which gives a total SFR of 500\approx 500 M_\odot/yr. Using the correlation between the radio and far-IR (FIR) luminosities of star-forming galaxies, we find that the host of GRB980703 is at the faint end of the class of Ultra Luminous Infrared Galaxies (ULIRGs), with L_{FIR}\sim few\times 10^{12} L_\odot. From the radio measurements of the offset between the burst and the host, and the size of the host, we conclude that GRB980703 occurred near the center of the galaxy in a region of maximum star formation. A comparison of the properties of this galaxy with radio and optical surveys at a similar redshift (z1z\approx 1) reveals that the host of GRB980703 is an average star-forming galaxy. This result has significant implications for the potential use of a GRB-selected galaxy sample for the study of galaxies and the IGM at high redshifts.Comment: Submitted to Ap
    corecore